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In this paper the implementation of second-order Godunov methods 
for dynamic wave propagation in one-dimensional elastic-plastic solids 
is investigated. First, the Lagrangian form of the algorithm is reviewed, 
and then the algorithm is extended to the Eulerian frame of reference. 
This extension requires additional evolution equations to handle the 
history of the material along particle paths. Both the Lagrangian and 
Eulerian versions of the algorithm require appropriately accurate 
approximations to the solution of Riemann problems, in order to 
represent the interaction of waves at cell boundaries. Two inexpensive 
approximations to the solution of the Riemann problem are con- 
structed, and the resulting algorithms are tested against the analytic 
solution of the Riemann problem for longitudinal motion in an elastic- 
plastic bar. These approximations to the Riemann problem are shown 
to work well, even for strong discontinuities. Finally, the numerical 
experience gained from the simple longitudinal bar problem is used 
to design an algorithm for strong shocks predicted by a realistic soil 
model. 0 1992 Academic Press. Inc 

1. INTRODUCTION 

The traditional approach to the numerical simulation of 
shocks in solids is to use piecewise linear finite elements (i.e., 
centered finite differences) for the spatial discretization, 
coupled with some form of the method of lines in time 
[3, 6, 331. Typically, these methods produce significant 
numerical oscillations near discontinuities, unless stabilized 
by artificial viscosities [6, 331. 

In gas dynamics, these centered-difference methods have 
been replaced by modern upwind shock-capturing methods, 
such as flux-corrected transport pioneered by Boris and 
Book [7] and (for example) implemented on unstructured 
meshes in a finite element setting by Lohner [22], total- 
variation diminishing techniques developed by Harten [ 143 
and applied to aerodynamic problems by (for example) 
Yee [ 321, essentially non-oscillatory schemes developed by 
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Harten and Osher [17] and extended by (for example) 
Shu [26], or higher-order Godunov methods developed by 
van Leer [3 1 ] and extended by (for example) Colella and 
Woodward [S, lo]. Our goal is to investigate the applica- 
tion of the last of these methods to the computation of 
shocks in elastic-plastic solids. 

The application of upwind methods to shocks in solids 
has not been trivial and has required us to investigate the 
mathematical formulation of the problem. After writing the 
equations of motion in first-order form, we analyzed their 
characteristic structure, including the effect of rotationally 
invariant stress-rate measures on the acoustic tensor 
(cf. [23]). This enabled us to describe algorithms for the 
integration of one-dimensional Lagrangian equations of 
motion, employing an approximate Riemann solver derived 
from a weak-wave expansion [29]. 

The current stage in our research involves several new 
issues. One is to extend the previous Godunov method to 
the Eulerian frame of reference. Here, an important task is 
to develop additional equations to determine the evolution 
along particle paths of the history parameters for the 
plasticity models; this development is necessary because the 
material models are evaluated at the Eulerian cell centers, 
but the material particles do not stay fixed on the numerical 
grid in the Eulerian frame. Another difficulty with the 
Eulerian frame is due to the presence of unsteady contact 
discontinuities, such as occur at interfaces between distinct 
materials, or at parts of the same material with different 
histories. These contact discontinuities are smeared by 
numerical dissipation in the Eulerian front-capturing 
schemes since (unlike shocks) the contact discontinuities 
are not self-sharpening. Yet another difficulty is associated 
with the use of Riemann problems to determine the numeri- 
cal fluxes used in the conservative difference step of 
Godunov’s method. Ideally, these fluxes are evaluated at the 
stationary state in the solution to the Riemann problem. In 
the Lagrangian frame of reference, the flux at the stationary 
point is given by the flux at the constant state on either side 
of the contact discontinuity. In the Eulerian frame, the state 
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moving with zero speed could occur in one of the nonlinear 
wave families, depending on the size of the normal velocity. 
As a result, in the Eulerian frame it is necessary to develop 
more complicated approximations to the Riemann problem 
solution than are needed in the Lagrangian frame. 

Another issue is to demonstrate the convergence of the 
numerical algorithms. For nonlinear solid mechanics, the 
existence of global solutions to initial value problems has 
not yet been demonstrated; furthermore, the convergence of 
higher-order numerical methods for hyperbolic systems has 
also not been established. Our approach is therefore more 
experimental. By using the analytic solution to the Riemann 
problem for the Antman-Szymczak model [30], we can test 
our algorithms on a set of problems that represent, in 
some sense, a full range of (one-dimensional) elastic-plastic 
waves. This set of experiments helps us to determine the 
applicability of our weak-wave approximation to the 
solution of the Riemann problem. 

Our final goal in this paper is to apply the experience 
gained with the Antman-Szymczak model to models of 
practical importance. We can use the same techniques in 
combination with more complicated equations of state to 
study interesting wave propagation problems. For this 
example, we have selected a calculation of an explosion 
inside a clay sphere. 

2. LONGITUDINAL MOTION IN 1D 

We shall begin by describing the equations of motion for 
longitudinal deformation of a one-dimensional solid. Let v 
be the velocity, 0 be the stress, sL be the displacement 
gradient, pL be the density at rest, z denote time, and xL 
denote distance in the original (Lagrangian) conliguration. 
Then conservation of momentum and equality of mixed 
partial derivatives of the displacement yield the following 
first-order system of conservation laws: 

(2.1) 

If we allow transverse motion in the material, then the 
system of Eqs. (2.1) must be expanded; see [29] for details. 
This system of equations can be closed by prescribing a 
kinetic equation of state, relating the stress to other 
variables in the motion. However, kinetic equations of state 
can take a number of different forms, the description of 
which would take us far beyond the scope of this paper. 
Instead, we will describe a simple model that will be used for 
the bulk of our examples and introduce a more realistic 
model in Section 6. 

In the Antman-Szymczak model [2], the stress 0 is an 
increasing function of the displacement gradient sL and a 
history parameter 7~: 

cr =0(&L, 7-L). (2.2) 

For any physically realistic displacement gradient sL, there 
are upper and lower bounds on the stress 0, given by the 
functions c(cL) and t(sL), representing the plastic compres- 
sion and tension curves, respectively. Between these bounds, 
the stress is given by the elastic curves CJ = e(sL, n). Plastic 
compression occurs if and only if the material is at yield, and 
the time rate of change of the displacement gradient is 
negative: 

4&L) =4&L, 7.c) 
d& 

and 4 ~0 
aT x 

during plastic compression. Similarly, 

t(~~) = 4EL, 7~) 

dE 
and 2 >O 

aT .r 

during plastic tension. There are other constraints placed on 
these functions and variables in order to make a consistent 
and realistic model; please see [2 or 301 for details. Specific 
forms of the elastic and plastic curves are presented at 
the end of the next section, where the algorithm for the 
evaluation of c is described. 

It is easy to see that (2.1) is hyperbolic. This is because we 
can write the equation in the form 

a pLv 
& EL - [ 1 

[ 

0 

1 

E 

a0 

aE, a 

0 
l- 

ax, 
PLV =o 

EL 1 ’ 
where the eigenvectors and eigenvalues of the matrix of flux 
derivatives are given by 

Since stress is an increasing function of the displacement 
gradient, the characteristic speed 

2, = JuiPLhwaEL) (2.3) 

is real. For material particles at the elastic limit, this charac- 
teristic speed is not uniquely defined; depending on the 
loading direction, the appropriate characteristic speed may 
be given by the slope of the elastic curves during unloading, 
or by the slope of the appropriate plastic curve during 
plastic yield. 
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We also note that the total energy density 

F 
El. 

v=;p,v2+ 0 dE,, 

is the “entropy function” for (2.1) [ 121; the “entropy flux” 
is the rate of work per volume 

f$= -vcT. 

Since v is a convex entropy function, we can add a small 
viscous term to the right-hand side of (2.1) and derive 

in the limit as the viscosity approaches zero [21]. This 
shows that for motions achieved in the limit of vanishing 
viscosity, the total energy cannot increase in time. 

We also note that at a discontinuity, the solution to (2.1) 
satisfies the jump conditions [ 1 l] 

where the subscripts on the square brackets label the states 
on the two sides of the discontinuity, and s is the speed of 
the discontinuity. Thus, at a zero-speed discontinuity (i.e., a 
contact discontinuity), the velocity and stress are con- 
tinuous while the density, strain and displacement may have 
jumps. At a moving discontinuity the density is continuous 
while the velocity, stress, strain, and displacement may 
jump. In this case, we can write the shock speed in the form 

s = f Jc llPL)( aR-oL)/((EL)~- (&dL). 

At a discontinuity achieved in the limit of vanishing 
viscosity, the entropy function satisfies 

Since the entropy function is convex, it is also possible to 
show [ 121 that the chord condition 

ads c*--L _ gR-"L 

E*-(EL)L (&L)R-(&L)L 
(2.5) 

must be satisfied for all E, between (E~)~ and (&JR. 
Next, we will describe the Eulerian form of the equations 

of motion, 

g+g=o. 
E 

(2.6) 

Here the vectors of conserved quantities and fluxes are 
(respectively) 

r PE i r pEv i 

Also, p E = pL( 1 + sL) is the density in the current conligura- 
tion, 

EL 
EE= -1 +EL 

is the Eulerian displacement gradient, rcO is the plastic 
history parameter at the beginning of the particle path that 
leads to the current particle position, and xE is position in 
the current configuration. 

3. LAGRANGIAN ALGORITHM 

At this point we have described the problem in both the 
Lagrangian and Eulerian frames of reference, discussed the 
hyperbolicity and characteristic speeds for the equations 
of motion, and presented the conditions determining 
physically correct shocks. The next task is to describe our 
approach to the numerical solution. We will begin with the 
Lagrangian version of the method. There are six steps in our 
second-order algorithm: 

1. characteristic analysis and timestep estimation, 

2. monotonized slope computation, 

3. characteristic tracing, 

4. flux computation, 

5. conservative differences, and 

6. stress update. 

We begin a timestep with cell-centered values of the 
velocities, displacement gradients and stresses. Our goal is 
to compute these quantities at the next time level. 

The first step requires that we compute characteristic 
speeds associated with the current loading conditions; this is 
discussed in detail in [29]. In particular, the characteristic 
speeds and directions can be determined from the eigen- 
values and eigenvectors of the acoustic tensor. For the 
Antman-Szymczak model, the form of the characteristic 
speed was derived in (2.3). As we noted above, this speed is 
not uniquely defined when the material is at an elastic limit. 
For example, in cells undergoing plastic compression at the 
beginning of the timestep we take 2, = ,/( l/p,)(&/&,). 
For plastic tension, we take A, = Juihhwd. 
Otherwise, we use the elastic speed, 1, = ,,/( l,Jp,)/(&/&,). 
However, for purposes of determining the size of the 
timestep, we always use the fastest elastic speed in a 
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Courant-Friedrichs-Lewy (CFL) condition and typically 
reduce it by some factor (called the CFL factor) to allow for 
the discrete sampling of the larger characteristic speeds that 
may form during the motion. This timestep selection uses 
the elastic speed because it is always larger than the plastic 
speeds, and the timestep must be limited by the fastest 
characteristic speed that might occur in the motion. 

The next step in the algorithm is to compute the 
monotonized slopes. The goal of this step is to construct 
values for the flux variables (i.e., cr and v) at the cell edges. 
Here, we remark that two alternatives are possible. We 
could have applied the Godunov algorithm in the tradi- 
tional form, by constructing slopes in the conserved quan- 
tities pv and E, as in [2]. One drawback of this approach 
is that it introduces numerical viscosity at contact dis- 
continuities, where velocity and stress are continuous but 
displacements and their gradients can be discontinuous. 
Another disadvantage of the traditional approach to the 
Godunov method is that it is necessary to call the equation 
of state at each side of the cell edge to compute fluxes in the 
solution of the Riemann problem. (That is, stress must be 
computed from the traced displacement gradients.) This 
leads to additional computational expense; in fact, for com- 
plicated equations of state, the determination of stress is the 
dominant cost. On the other hand, one possible difficulty 
with our approach is that the stresses we construct at the 
cell edges are not realizations of the equation of state and 
may therefore by “unphysical,” meaning that they could 
violate constraints such as yield conditions. 

Let us describe our approach to the slope construction. 
First, we rewrite the equations of motion in the quasilinear 
form (cf. [ 191) 

a v [I O l- a v PL 

&a- .[ 1 - [I ax, a 
= 0. 

-go 
(3.1) 

L 

Note that the second equation in (3.1) is derived from the 
equation of state (2.2) by differentiating it in time and using 
the second equation in (2.1). In the particular case of the 
Antman-Szymczak model, no terms involving an/& appear 
in the linearization for two reasons: in elastic response, the 
plastic history n is constant, and in plastic response, the 
stress c is independent of K. Also note that the linearized 
coefficient matrix has a characteristic structure given by 

0 L 
PL 

[ I 
-go 

L 

= 

These results allow us to expand the jumps in cell averages 
of the flux variables in terms of eigenvectors of the linearized 
coefficient matrix: 

Afterward, the expansion coefficients AC’ are adjusted to 
prevent the introduction of new extrema [S]: 

AC’ =min{I(Ac’),l, I(Ac’),I, $ I(Ac’),l} 

x (sign{(Ac’),} +sign{(Ac’),}}. 

This step is analogous to a local decoupling of the equations 
of motion into a set of scalar evolution equations, and the 
slope limiting procedure has the effect of introducing a selec- 
tive numerical viscosity in individual wave families [27]. 
Note that the contribution of the numerical viscosity to the 
momentum equation is analogous to the introduction of a 
viscous force, and the contribution to the stress-rate equa- 
tion is analogous to the introduction of a visco-elastic term 
in the constitutive law. 

Recall that the characteristic speeds change discon- 
tinuously from elastic to plastic behavior. This discontinuity 
destroys the ability of the slope construction to obtain 
second-order accuracy and may require the numerical 
scheme to separate an initial discontinuity into two distinct 
shocks traveling in the same direction with different speeds. 
As a result, at all cell edges where the neighboring cells are 
undergoing different loading conditions we set the slopes to 
zero; that is, we fall back to the first-order Godunov 
method. 

We also note two other possible situations under which 
the slopes undergo further modification. In the Eulerian 
version of the algorithm, we use fourth-order slopes to 
improve the resolution of contact discontinuities; this is 
discussed further in the next section. For strong sharp dis- 
continuities it is useful to introduce additional slope limiting 
to reduce numerical oscillations; this slope flattening 
process is described in Section 5. 
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Our next step is to use the limited slopes in the charac- 
teristic families to construct values for the flux variables at 
the left- and right-hand sides of the cell edges at the half- 
time level. This is accomplished by performing a Taylor 
expansion about the cell centers in order to approximate 
the values at the cell edges and half-time levels, using the 
quasilinear form (3.1) to replace the time derivative in the 
Taylor expansion, and multiplying by the left eigenvectors 
of A to find the characteristic quantities, and then throwing 
away characteristic information that goes the wrong way: 

Pl 
k + I/2 

Pl k + l/2 

bJ,, + 112-R 

We note that an alternative approach is to limit slopes in v 
and r~ directly, then compute the expansion coefficients of 
the limited slopes and continue the characteristic tracing. 

Afterward, we resolve the interaction of the waves 
between the left and right states through the approximate 
solution of a Riemann problem. Note that there are good 
reasons for developing an approximate Riemann solver. 
Although an analytic Riemann solver is available for the 
Antman-Szymczak model, it is far too expensive to use 
in practice. The more serious problem is that for general 
equations of state, the analytic solution of the Riemann 
problem is unknown. Thus our approach is to develop an 
approximate Riemann solver by testing it on a problem for 
which the solution is known. 

In developing an approximate Riemann solver, we have 
several goals in mind. The first is that the Riemann solver 
must be second-order accurate for weak waves. This is in 
contrast to the approach in Antman and Szymczak [2], 
where an approximate Riemann solver is employed, using 
only bounds on the characteristic speeds. For systems of 
two equations, our approach is more similar to that of 
Harten et al. [ 163, where an approximate Riemann solver 
employing one intermediate state is developed. However, 
their approximate Riemann solver views the Godunov 
method in terms of averaging an approximate evolution 
operator instead of formulating a conservative difference. 
A consequence of this formulation is that their method 
would introduce numerical viscosity at all jumps in the 
displacement gradient, even contact discontinuities. This 
violates our second principle, that we avoid the addition of 
numerical viscosity at contact discontinuities in the 
Lagrangian frame. 

Our third design principle is that the Riemann solver 
must be extendible to a second-order scheme for more 
general deformations involving shear, in which there may be 
as many as six nonzero characteristic speeds, plus a zero 
speed for the contact discontinuities, and therefore six inter- 
mediate states. If we viewed the Godunov method in terms 
of averaging the evolution of the Riemann problem solu- 
tion, as in [16], instead of constructing a conservative 
difference approximation, then the treatment of six inter- 
mediate states would be difficult. Another design goal is to 
enforce some form of an entropy condition for strong waves. 
In this regard, we note that one of the attractions of the 
approach in [16] is that the approximate Riemann solver 
can be shown to satisfy an entropy condition. However, the 
proof requires that an entropy function exist, which is not 
true for many of the applied models for solids (many of the 
hypoelastic models do not even possess a strain energy [4]). 
Our alternative approach will be to adjust the numerical 
diffusion in the approximate solution to the Riemann 
problem, taking care that sufficient diffusion is introduced 
near strong discontinuities (see Section 5). 

In this section, we will describe an approximate Riemann 
solver that satisfies the first three of our design goals; this 
scheme will be modified in Section 5 to handle strong 
discontinuities. The starting point in the approximate 
Riemann solver is to use the available characteristic infor- 
mation to construct an approximate path in flux-variable 
space for the wave interaction. First, we decompose the 
jump in terms of the characteristic directions, by computing 
the expansion coefficients a * : 

a- 

[ 1 a+ 

[ 

1 - l = (LPL): (&PL)Jk+l ll'i[x:::, - [3::,;:,1. 
Next, we approximate the state that remains stationary, by 
either of two equivalent expressions: 

This approximate Riemann solver is very simple to imple- 
ment and works well for weak waves. Note that we have 
previously used this Riemann solver in one-dimensional 
problems involving both longitudinal and transverse 
motion. Even in this complicated setting, the algorithm 
reduces to the solution of at most a 3 x 3 system of 
equations [29]. 

In the next step of the Godunov method, we update the 
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conserved quantities, namely momentum and displacement 
gradient, using the following finite difference calculation 
derived from (2.1) and the divergence theorem: 

vp, k+’ [ 1 E L j 

Note that our difference scheme conserves momentum 
exactly. Furthermore, discrete traveling discontinuities 
satisfy equations that are discrete forms of the Rankine- 
Hugoniot conditions (2.4). The difference equations for the 
displacement gradient can also be derived from the equation 
for the displacements at the cell edges, 

In other words, for one-dimensional computations it is 
equivalent to compute the cell-centered values of the dis- 
placement gradient as spatial gradients of the displacement. 
At the end of this step, we have updated the velocity and 
displacement gradient to the new time level. 

All that remains is to update the stresses and history 
parameters. This step depends on the model being used. For 
simple problems, such as the Antman-Szymczak model, the 
stress update is very inexpensive. The process begins with 
the old value of the history parameter a and the new value 
of the displacement gradient sL. Then we perform the 
following computations: 

0 :=max{c(s,), min{e(s,, n), t(sL)}}; 

if c = c(E~) solve f~ = e(.aL, 7r) for 71, 

elseif 0 = t(sL) solve c7 = e(sL, 7~) for 71. 

This produces new values for the stress CJ and the history 
parameter 7~. For other models, such as hypoelastic models, 
the stress update is significantly more complicated, 
involving the determination of strain rates, rotation to 
an indifferent frame of reference, and the integration of 
constrained ordinary differential equations. In order to 
maintain the overall accuracy of the Godunov method, it 
is necessary that these computations be second-order 
accurate. An example of the application of second-order 
Godunov methods to a hypoelastic model, and of the modi- 
fications to the algorithm for the equation of state, can be 
found in [28]. 

As numerical examples, we present the results of two 
computations using the Godunov method presented above, 

in combination with the Antman-Szymczak model. Here: 
we have chosen the model functions to be 

e(c,, 71)= - 
0.49 

0.7+&,-x 
+ 0.7 + EL - II, 

1 
d&L) = -0.1 - (1 + EL)2, 

q&L)= 1.1 -~ 
J&F. 

The first of our examples represents the typical case in 
impact problems, where an elastic precursor and a plastic 
shock travel away from the point of impact. In this case, the 
initial discontinuity is at the center of the grid, with 7t = 0.93, 
sL = 1.161, and v = 0 in the left-hand material, and 7-c = 0.35, 
D = -0.252, and v = - 1.08 1 in the right-hand material. The 
second of our examples has been chosen because it is par- 
ticularly difficult for the Eulerian version of the algorithm, 
as we will see in the next section. In this example there is a 
weak elastic shock, a substantial contact discontinuity, and 
elastic and plastic rarefactions. Again, the initial discon- 
tinuity is at the center of the grid, with rc = 4, sL = 4.397, and 
v = 0 in the left-hand material, and rc = 0.3, CJ = -0.05, and 
v = 0.468 in the right-hand material. 

The numerical results for these two calculations, com- 
puted with a CFL factor of 0.9, are shown in Figs. 1 and 2. 
In the upper left-hand plot of each figure, the path chosen by 
the solution of the Riemann problem is shown in velocity- 
stress space, while the stress-strain relationship is shown in 
the top right-hand plot. Since the solution of a Riemann 
problem is self-similar, we plot velocity, stress, displacement 
gradient, and characteristic speed versus the similarity 
variable, namely, distance from the initial discontinuity 
divided by elapsed time, Thus the horizontal axis of these 
figures can be used to read the shock speeds, and the plot of 
the Lagrangian characteristic speed versus the similarity 
variable can be used to verify the satisfaction of the Lax 
entropy condition [20]. The solid lines represent fine grid 
calculations with 1000 cells; the plus signs represent the 
results of the same calculation with 100 cells. Note that 
shocks are typically resolved in two to three cells, and 
rarefactions are accurately resolved. Also note that the plots 
of characteristic speeds may show some significant varia- 
tions in the middle of constant states on a yield surface; 
these are due to the two choices of characteristic speed 
available to the algorithm. Tiny numerical oscillations will 
cause the algorithm to switch from plastic loading to elastic 
unloading or vice versa. 

4. EULERIAN ALGORITHM 

The Lagrangian and Eulerian frames of reference each 
have advantages and disadvantages for simulation. Com- 
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FIG. 1. Lagrangian calculation with elastic precursor and plastic shock. 

putations in the Lagrangian frame of reference are useful for 
keeping material interfaces separate, since the material 
interfaces are tracked by the computation. However, 
Lagrangian calculations can require smaller timesteps 
near strong discontinuities. Furthermore, the Lagrangian 
calculations can fail near strong rotations. For updated 
Lagrangian calculations (in which the grid moves with the 
material particles), cell inversions or multi-dimensional 
bow-ties can occur; for true Lagrangian calculations, the 
determinant of the deformation gradient can become zero 
or negative. On the other hand, Eulerian calculations are 
useful for strong rotations (e.g., shear bands and cratering), 
since the grid cells (typically) stay fixed in the current frame 

of reference. However, Eulerian calculations typically smear 
contact discontinuities. Furthermore, Eulerian calculations 
for solids are more expensive: they involve the solution of a 
larger system of equations, and the solution of the Riemann 
problem is more difficult to approximate. 

In this section, we will describe an Eulerian version of 
the higher-order Godunov method. One purpose of this 
work is to develop the techniques required to approximate 
the solution of the Riemann problems. However, if we 
are willing to put the problem in a frame of reference 
moving sufficiently fast (i.e., faster than the characteristic 
speeds of the material) then the solution of the Riemann 
problems is trivial, since it is given by the upwind state. 
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This observation allows us to run calculations using an equations of motion (2.6) is a function of the flux variables 
exact Riemann problem solution no matter what the model unlike the Lagrangian case, the vector of Eulerian flux 
might be and to compare the results against calculations variables is larger than the vector of conserved quantities. 
requiring approximate Riemann problem solutions (such as As before, we can determine a quasilinear form (3.1) for the 
Lagrangian calculations). flux variables, obtaining the linearized coefficient matrix 

Let us begin the description of the Eulerian algorithm. 
Note that the flux vector f in the Eulerian form of the 

w= 

-PA 

V 

fs 

EE 

.x0 

PE 

o $lfs,) v 0 0 
E 

0 1 +EE 0 v  0 

0 0 

-.lSb.. . ’ . ’ * ” . * . a . ’ -.I 
-.I 0 .l .2 .3 .4 .5 .6 .7 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

STRESS STRAIN 

FIG. 2. Lagrangian calculation with elastic and plastic rarefactions. 
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for which the matrix of eigenvectors is 

X= 

-PE 1 0 0 --PE 

iE 000 -A, 

GPE 0 0 0 l$pE 

-l-&L 0 1 0 -l-&E 

0 001 0 _ 

and the matrix of eigenvalues is 

[ 
V-2, 000 0 

0 voo 0 A= 0 ovo 0 
0 oov 0 
0 0 0 0 v+l,, 1 

Here, the eulerian characteristic speed is 

-=-- 
aELpL(i+EE)‘= 

Most of the steps in the Eulerian higher-order Godunov 
method now carry over as in the Lagrangian case. The 
absolute value of the largest characteristic speed is A,+ JvI, 
and the timestep is chosen using the elastic values for E.,. 
The monotonized slope construction is similar to the 
Lagrangian case as well. In other words, we compute 
expansion coefficients 

Ac=XplAw= 

- (AV+~)/(~AE) - 

Ap, + da/%; 

As, + Aa( 1 + E&& 

4x0 

AC7 
-Av+- ch) 

PE’E I 

and limit these in the usual fashion. 
We use fourth-order slopes to steepen the contact dis- 

continuities. These are computed simply by Richardson 
extrapolation of centered differences at distances of two 
cells and four cells apart. Although subcell resolution [ 151 
would have given much better resolution of the contacts, we 
did not use this approach because it has not yet been 
generalized to multiple spatial dimensions. On the other 
hand, second- and fourth-order slopes can be determined in 
individual coordinate directions and then used in an unsplit 
multi-dimensional version of Godunov’s method [9]. 

In the characteristic tracing step, the Taylor expansion, 
replacement of the time derivative by the quasilinear form, 

and eigenvector replacement proceed as in the Lagrangian 
case. All that is left is the characteristic projection. The left 
states at cell edges and half-time levels are built up as a sum 
over positive eigenvalues of the linearized coefficient matrix, 
and the right states sum over negative eigenvalues: 

Here ei is the ith axis vector in the Euclidean space of 
appropriate dimension. 

Unlike the previous steps, the approximate solution of 
the Riemann problem is significantly more complicated in 
the Eulerian frame than in the Lagrangian frame. The essen- 
tial ideas for our approximate Riemann solver are contained 
in Bell et al. [S], which was inspired by the work of 
Engquist and Osher [ 133. 

Because we use the divergence theorem to derive the 
conservative difference equations, the evaluation of the time 
integral of the flux at a cell edge requires an approximation 
to the flux at the stationary state in the Riemann problem. 
In the Lagrangian frame of reference, this is relatively easy 
to find, because the waves exhibit reflection symmetry 
(i.e., the characteristic speeds come in plus/minus pairs); as 
a result, the stationary state must be the constant state 
between the left-moving and right-moving waves. Actually, 
this constant state may be split at zero speed by a contact 
discontinuity, but the Rankine-Hugoniot conditions for 
this contact discontinuity show that the flux must be 
continuous across the Lagrangian contact. In this case, we 
merely average the fluxes on either side [29]. In the 
Eulerian frame, the stationary state in the solution of the 
Riemann problem might occur in the middle of one of 
the nonlinear waves; this requires extra care. 

First, we decompose the jump between the left and right 
states in terms of the expansion eigenvectors, which are 
chosen as in the Lagrangian frame (eigenvectors with eigen- 
values v - 2, chosen from the left cell, eigenvectors with 
eigenvalues v + II, chosen from the right, and the other 
eigenvectors are constant): 

4 
k+ l/2 w,+ 112, R -$~$,=X,ke,a,+ C Xeiai+X~+,e,a,. 

i=2 

Next, we check for transonic waves (waves with a change in 
the sign of the characteristic speeds) and determine whether 
the reference state for the Engquist-Osher flux should be 
the left or the right. Our principal objective is to avoid, 
as much as possible, an Engquist-Osher flux approxima- 
tion involving the linearly degenerate waves (those with 
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characteristic speed equal to the particle velocity v). Thus, 
we choose the left state as the reference state if vL + vR > 0; 
otherwise, we choose the right state as the reference state. 
Additionally, if in the former case the slowest characteristic 
speeds are negative in both the left and right cells, we move 
the reference state to the constant state following this wave 
family. A similar move is made if the right state is the 
reference state and both of the fast speeds are positive. Next, 
we evaluate the flux at the reference state. Note that if for 
each wave family the characteristic speeds on the left and 
right have the same sign, then we are done. 

For simplicity, we assume that the initial reference state is 
the left state. Then we add to the flux at the left state an 
integral of the characteristic speed over those parts of the 
path where the characteristic speed is negative (if the 
reference state was moved to the first constant state, then 
the contribution of the first leg of the path to the integral is 
ignored): 

If there is at least one transonic wave family, we compute A similar statement holds if the right state was the reference 
the Engquist-Osher contribution to the flux computation. state, by considering parts of the path where the charac- 
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teristic speed is positive. The computation of the integral 
involves estimating the point at which the characteristic 
speed becomes zero. Using the pair of characteristic speeds 
for the same family from the cells on the left and right and 
assuming that this pair of characteristic speeds has opposite 
signs, we use linear interpolation between the two to 
estimate the expansion coefficient at which the charac- 
teristic speed should be zero. (Note that the use of a linear 
approximation to the characteristic speed is based on an 
assumption of no local extrema of the wavespeeds; if these 
are permitted by other choices of the model, then more 
elaborate representations of the characteristic speed must be 
used [l, 51.) We store the points along the leg of the path 
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where the wavespeeds are negative or zero and evaluate the 
flux at these points, obtaining an approximation 

Xe, 
s 
~‘minj&, 0} dui~:f(wgnd)--f(wP”p’“). 

Note that, since I,=A,=&,=v, we can combine the 
Engquist-Osher flux approximations for the linearly 
degenerate families. Thus the final numerical flux has the 
form 

f,"=l::'=f(Wik=ll~~L)+[f(W~nd)-f(W~)] 

+ ~f(w"z""~)-f(w~-"'4")]+[f(w'5"",-f(w~,]. 
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The final steps involve the conservative difference and 
stress update. These steps are similar to the Lagrangian 
case. 

As numerical examples, we present the results of the same 
two problems studied in the Lagrangian case. In the first of 
the two examples (Fig. 3), the Eulerian algorithm resolves 
the shocks and contact discontinuities in two to three cells. 
On the other hand, the results on the second problem 
(Fig. 4) indicate that the Eulerian algorithm is not always 
so accurate. Here, the elastic shock moving left is highly 
smeared during startup and is not sufficiently strong to 
steepen itself into the typical two to three cell traveling dis- 
continuity. We have performed this calculation twice: the 

first case in a frame of reference where the contact discon- 
tinuity is stationary, and the second in a frame of reference 
where all of the characteristic speeds are positive (see 
Fig. 5). Note that in the latter case, the exact solution of 
the Riemann problem is always given by the left state, so 
the poor performance of the algorithm is not due to the 
approximate Riemann solver. Rather, the inaccuracy is due 
to the interaction of the errors in capturing the contact dis- 
continuity with the other waves during the early stages of 
the calculation. Because there is so little variation in the 
characteristic speed across the left-moving elastic shock, 
errors made in smearing the contact discontinuity can 
dominate the slight self-sharpening aspects of this weak 
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shock. When the contact discontinuity is tracked (as in a 
Lagrangian calculation), the waves are captured very nicely. 
This problem with contact discontinuities reducing the 
ability to capture other nonlinear waves in Eulerian calcula- 
tions has also been noted in the context of enhanced oil 
recovery [ 1 ] and was shown in that case as well to be over- 
come with tracking of the contact discontinuity alone [IS]. 
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above have been tested on all 21 of the different kinds of 
solutions to the Riemann problem for the Antman- 
Szymczak model that were presented in [30]. The Eulerian 
algorithm worked well on all but two of the problems, 
where in each case it greatly smeared a weak shock because 
of the presence of a large contact discontinuity (see Figs. 4 
and 5). On the other hand, the Lagrangian algorithm 
worked well on all of the problems except one involving a 
large change in characteristic speed, stress, and velocity 
across a shock. In this case, the second-order algorithm 
showed large oscillations behind the shock, which could be 
reduced but not removed by using the first-order algorithm. 
(See Fig. 6, which was run using the first-order algorithm at 

5. STRONG DISCONTINLJITIES 

Although we have not presented all of the results here, 
the Lagrangian and Eulerian higher-order Godunov algo- 
rithms using the weak-wave Riemann solvers discussed 
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FIG. 6. First-order Godunov using weak-wave Riemann solver on strong shock. 
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CFL = f.) In this problem the left state is given by rc = 3.25, 
Ed = 3.5, and v = 0, while the right is given by 7c = 0.217, 
r~ = 0.207, and v = -5.081. There are three waves in this 
example: an elastic shock precursing a strong plastic shock 
moving to the left, and a shock moving to the right. The 
difficulty in the Lagrangian algorithm derives from the 
coupling of the very large change in the plastic wavespeed 
across the plastic shock, with the large jumps in stress and 
velocity. This causes the weak-wave approximation of 
Section 3 to construct averages of the stresses and velocities 
in ways that do not correctly upwind the scheme. Let us 
discuss this point in greater detail. 

.5 r 
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Consider Rusanov’s method [ 241: 

= _ 
[ 

~(0~+*+OJk)+t;1(PLyik+1-PLV:) 
1 4(v.r+1+v:)+~n((&,),k+,-(&L!:) . 

Here ;1 is an upper bound for the characteristic speeds along 
the path from ~1 to u,“+ i in the solution to the Riemann 
problem. When combined with a conservative difference, 
this method is a first-order upwind method and highly 
diffusive. For the strong shock example with the Antman- 
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FIG. 7. Rusanov’s method on strong shock. 
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Szymczak model, the Rusanov scheme produces highly 
smeared elastic and elastic-plastic shocks, but a somewhat 
better resolved plastic shock without numerical oscillations 
(see Fig. 7). 

Next, we consider the weak-wave approximation used in 
our version of Godunov’s method above. After computing 
the expansion coefficients, we Iind that our approximation 
to the flux at the solution of the Riemann problem is 

f 

[ 
( 
aJ*LPL)f+ 1 + (aALP,): 

=- + VLPL): (l,PL$+ 1 tv,“+, - $1 w*LPL): + WLPL):, , + (a;+ ] -a,", 'I 
x GLPL$ + (RLPLI:, 1. 

In the case where the left and right acoustic impedances 
are equal, i.e., (I,p,),k = (L,p,)r+, = LLpL, this formula 
becomes 

f,"21::' = 

i 

-;(a;+a),*)-~(v;+,-v;) 
-; ($ + v;+ ,) _ "1*2;1; 4 

I 
. (5.1) 

L L 

This has a form similar to Rusanov’s and clearly adds a 
diffusion to the average flux. On the other hand, if 
(2,pL)r+, ti (jVLpL)T (as at the strong shock in Fig. 6), the 
weak-wave approximation yields 

- 0; - VLPL),k (v,“+ j  - v;) 

f 
k+ I;2 x 
/ + II2 -v:+1- 

a,k+, -0; 

I 

, 

vLPL);+, 

This upwinds the velocity and downwinds the stress, leading 
to numerical oscillations. 

We will present two solutions to this problem, both of 
which can be generalized to problems involving shear. 
The first of the two methods uses a “strength-weighted 
average” of the characteristic speeds. This method produces 
reasonably good results for the test problems with the 
Antman-Szymczak model and is the only method that we 
have found to work successfully on the more realistic 
problem in Section 6. The second method makes some 
further modifications to the Riemann problem solution in 
order to guarantee that, at least at a strong discontinuity, 
the numerical flux is the Godunov flux plus a numerical 
dissipation. 

The principal observation in both our approximate 
Riemann solvers for strong shocks is that the use of equal 

characteristic speeds for both the forward- and backward- 
moving characteristic directions makes the method more 
like Rusanov’s. The natural approach is to construct some 
sort of average of the characteristic speeds found on either 
side of the cell edge where the flux is to be evaluated; in this 
way, the method is still accurate for weak waves. However, 
if the jump at the cell edge corresponds to a single wave, 
then we would prefer to use the characteristic speed and 
direction associated with this wave. Our first solution is to 
adopt a two-step approach to approximating the solution 
to the Riemann problem. First, we average the acoustic 
impedances Ip on the left and the right, 

(G)kj+ l/2 = 4 t~;P,+q+,P,+lh 

and use this average to determine the expansion coefficients 
of the jump: 

-- a [ 1 -+ a 
-1 ,$+1/Z -vk+1/2 

I[ 
J+ 1/2,R J+ 1/2-L 
k + l/2 

aj+ l/Z,R 
-*k+w * 

J+ l/2,!- 1 
Next, we construct a “strength-weighted average” of the 
acoustic impedances, 

t&9,+ l/Z = 
t&4: k-1 +(&$+I Ifi+ 

Iii-1 + lcr’l - 

We then use this average to construct revised values of the 
expansion coefficients and the solution to the Riemann 
problem. This approximate Riemann solver is generalized 
to problems involving shear by working with averages of the 
square roots of the acoustic tensors. 

The numerical results with first-order Godunov using 
the strength-weighted averages are shown in Fig. 8. This 
strength-weighted average of the acoustic impedances 
allows the first-order Godunov method with the approxi- 
mate Riemann solver to perform as well (at least for 
the Antman-Szymczak model) as first-order Godunov with 
the analytic Riemann solver (see Fig. 9). There are some 
small numerical oscillations just to the right of the strong 
plastic shock, even with the analytic Riemann solver. These 
appear to be due to the fact that the strong plastic shock is 
moving slowly (i.e., at a low CFL, since the timestep is 
dominated by the faster elastic speed at the stationary 
state), and so the dissipation of first-order Godunov is not 
sufficient to overcome the self-sharpening aspects of the 
strong shock. If, on the other hand, we solve the problem in 
an Eulerian frame of reference with all waves moving to the 
right, no significant numerical oscillations are detected 
(see Fig. 10). 

Unfortunately, we are not able to show that the strength- 

581/103/l-6 
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FIG. 8. First-order Godunov using strength-weighted average Riemann solver on strong shock. 

weighted average, by itself, introduces sufficient numerical Also, the flux given by the strength-weighted average is 
diffusion into the numerical method. Furthermore, the 
reasoning used to develop the strength-weighted average 
would suggest that averaging the acoustic tensors (i.e., ,12pz 
instead of &I) should work; in numerical experiments, this 
modification clearly does not work well. This suggests that 
we need to examine the numerical diffusion of the strength- 
weighted average in more detail. 

To simplify the discussion of this issue, we will assume 
that we have a shock at edge j + l/2 moving to the left with 
speed s < 0. Then the jump conditions for the shock are 

k 

’ -[ 
1 - (idJ,+ l/2 

1 

I+1 
- tALPL)j+ 112 

1 

x[$+:-;;];. 

Thus, for a strong shock moving right, the strength- 
weighted average takes the form 



Here the Godunov flux is essentially the flux at the right; 
the strength-weighted average adds to this flux a term 
depending on the jump in velocity. Since the jump in 
velocity is negative (typically) for a shock, the correction to 
the Godunov llux avoids being antidiffusive, provided that 
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the terms multiplying the velocity jump are nonnegative. In 
other words, diffusion is added to the Godunov stress if 

@LPL),+ l/2 + dPdj+ l/2 > 07 

while diffusion is added to the Godunov velocity if 

s(PL)j+ l/2 _ 1 > 0 

- tE’LPL)j+ l/2 ’ 

Thus, the strength-weighted average cannot add diffusion to 
both the stress and velocity simultaneously. Near a strong 
shock, the strength-weighted average will tend toward the 
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pre-shock acoustic impedance, which is the smaller of the In order to make sure that we have sufficient diffusion, we 
two; this will tend to add diffusion to the velocity com- have constructed an alternative Riemann solver. We use dif- 
ponent of the flux (i.e., equality of mixed partials) and anti- ferent acoustic impedances in constructing the expansion 
diffusion to the stress component (i.e., the momentum equa- coefficients of the jump, depending on whether we are deter- 
tion). For typical impact problems, this is not necessarily a mining the stress or the velocity component of flux. Thus, 
bad combination. Since the material bulk modulus (i.e., our approximate Riemann solver looks like 
&/c%) is typically large in the post-shock state, small 
oscillations in the displacement gradient will be greatly 

u k+l/Z 

amplified in the stress; thus, a small amount of diffusion II ’ j+ II2 

added to the Godunov velocity will contribute large 
damping to the stresses. On the other hand, the antidiffu- 
sion in the momentum equation, if small, can be overcome 

= 0 k + [I ‘i 
by other diffusive aspects of the Godunov method (e.g., 
averaging of the evolution operator). 

[ 

1 o*LPL);+ l/2 

1 

&PdJ+ 1,2 l 



where the acoustic impedances satisfy 
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which is unaffected by contact discontinuities (unlike the 
estimate in [ 161.) Then we take 

(LPL);+ I/Z ’ I4 h)j+ l/2, 

(h#+ I,2 < I4 (Pdj+ l/2. 

In theory, the minimum and maximum of the acoustic 
impedances on either side of the discontinuity could be used 
to satisfy these inequalities; in practice, additional care must 
be taken. We construct an approximation to a local shock 
speed, 

ISI k+1/2- 
l+lf2 - 

(w$+ I- (PLV): ’ 

These acoustic impedances are then used in (5.2). In 
problems involving shear, we would construct the shock 
speed in the fastest wave family by looking at the jump in 
normal stress divided by the jump in normal velocity. We 
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would then construct the maximum and the minimum 
acoustic impedances for the fast wave and use them to over- 
write the largest acoustic impedances of the original data. 

Like Rusanov’s method, this appoximate Riemann solver 
is highly diffusive; unlike Rusanov’s method, it does not 
introduce diffusion at contact discontinuities. In order to 
prevent this Riemann solver from smearing weak shocks, we 
employ a strong discontinuity detector. For this purpose, 
we compute an estimate of the strength of the discontinuity 
and a strong discontinuity detector: 

If v;+ l/2 is equal to 1, the discontinuity is considered to be 
strong and the approximate Riemann solver for strong dis- 
continuities is used; if it is equal to 0, the weak-wave 
approximation is used. For discontinuities of intermediate 
strength, we use qr+ ,,2 to average between the weak and 
strong fluxes. In addition, if $+ 1,2 > 0 we set the slopes to 
zero in the characteristic tracmg step. For the computations 
in this paper, we took cmin = $ and i,,, = i. We also used 
the elastic speeds in the denominators of CT+ 112. 

In summary, the strength-weighted Riemann solver has 
the advantage of using no user-controlled parameters, but 
it occasionally produces some small overshoots during 
startup, and it is not necessarily at least as diffusive as 
Godunov’s method with the exact Riemann solver. The 
other approximate Riemann solver for strong shocks can be 
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FIG. 12. Second-order Lagrangian algorithm on strong shock. 
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shown to be at least as diffusive as Godunov’s method for a 
single discontinuity, but it does involve two user-controlled 
parameters to turn it off away from strong discontinuities. 
This second Riemann solver produces better overall results 
than the strength-weighted averages for the Antman- 
Szymczak model, but does not work well for the model in 
the next section (see Fig. 11). 

These approximate Riemann solvers have greatly 
improved the first-order Godunov algorithm. However, no 
matter which Riemann solver we use, the second-order 
Godunov algorithm would still produce significant numeri- 
cal oscillations near strong discontinuities. This is because 
the small amount of numerical diffusion introduced by the 
second-order Godunov method is more than overcompen- 
sated by the compression of the shock. The result is that 
shocks become “too sharp,” with one or no points in the 
discontinuity and oscillations before or after the shock. 

A solution is to reduce the method to first-order near 
sharp discontinuities. Accordingly, we have introduced a 
revised form of “slope flattening” suggested by Colella [8]. 
Sharp discontinuities can be detected by jumps in stress or 
velocity two cells apart that are essentially the same as 
jumps four cells apart. (In problems involving shear, we 
look at jumps in pressure and normal velocity.) We 
compute 

o*85 _ a:+ 1 - of-- 1 
Wj=IWlX O,min 

i i 

1, &-& 

0.1 

o,85 _ v:+ I -VT- I 

v,“+2-v;-z . 
0.1 11 

(5.3) 

(Here, the constants 0.85 and 0.1 have been determined 
experimantally and are not adjusted in practice.) Afterward, 
we multiply the limited slopes AC,? by min{ oj- I, wj, w, + , } 
in order to introduce additional numerical diffusion in cells 
near a sharp discontinuity. 

In Fig. 12 we show the result of a second-order Godunov 
Lagrangian calculation using the second Riemann solver for 
strong shocks and slope flattening. Note that the shocks are 
now resolved in two to three cells. 

6. APPLICATION TO REALISTIC MATERIAL MODELS 

In the preceding sections, we have described second-order 
Godunov methods for the Antman-Szymczak model in 
Lagrangian and Eulerian frames of reference. This material 
model is useful for theoretical purposes, but does not 
describe the response of realistic materials. The purpose of 
studying second-order Godunov methods applied to this 
model has been to develop the numerical methods on 
problems with known answers. Our goal in this section is to 
apply the techniques developed for the Antman-Szymczak 

model to a plasticity model of practical interest, involving 
the effect of a high-explosive pressure load on the interior of 
a clay sphere. This next problem will involve a different 
material model. 

The cap model [25] is a well-known model for the defor- 
mation of soils and rock. It consists of a system of ordinary 
differential equations for the components of the stress tensor 
and a history parameter, with the system being constrained 
by plastic yield conditions: 

4 z= AY, ox 4(Y) do. 

Here, S’ 
Y= P [I E 

is a vector consisting of the deviatoric stress, the pressure, 
and a history parameter E(X) representing the plastic 
volumetric strain as a function of the location of the 
movable cap. Also, 

O(S’t P, xl = IIS’II - F(P, xl 

represents the yield conditions. Finally, D is the symmetric 
part of the velocity gradient (i.e., the strain rate). One of us 
has already described the implementarion of a second-order 
integration technique for this model [28]. He showed how 
to modify the previous first-order integration of the cap 
model differential algebraic equations in order to obtain a 
fully second-order algorithm and applied the combined 
algorithm to several problems involving weak to moderate 
waves. In this paper, we want to apply the model to a 
problem involving a strong shock in spherical symmetry. 

For the spherical explosion problem, the cap model 
functions are the same as in [28], except that the model 
parameters are different, and the bulk modulus is strongly 
nonlinear. The nonlinearity in the bulk modulus is designed 
to represent the softness of the initial material containing 
3% air voids, relative to its compressed state in which the 
air voids are gone and the material grains “lock up.” The 
cap model parameters are 

A =0.115 Mpa, B = -1.89 Mpa-‘, 

C = 0.095 Mpa, d= -0.6 Mpaa’, 

R = 2.5, w = 0.03, x,=0, 

,U = 300 Mpa, p = 1969 kg/m3 

The bulk modulus takes the form 

K=8~.+70.xmax(p,0}0~7Mpa, 

where the pressure p also has units of Mpa. The boundary 
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condition at the inner radius takes the form of an incoming 
wave with known radial stress, given by the pressure of the 
explosive gases. This is specified by the JWL equation of 
state 

p = 7.5807 x 10’ x exp( -4.91) 

+0.08513x 105exp(-l.l~)+0.01143x 105x[-‘.2. 

Here, [ is the ratio of the current volume of the explosive 
products (i.e., the inner cavity) to its initial radius. The inner 
radius is at 0.2947 m, and the outer radius is at 3.5m. The 
clay is initialized with an infinitesimal cap, corresponding to 
x = -0.013972 Mpa. Thus, the material is initially at yield. 

Now that we have outlined the stress-strain relationship, 
let us return to the equations of motion. In order to describe 
these equations in spherical symmetry, we will introduce 
some notation. The (Eulerian) Cauchy stress tensor takes 
the form 

so the (Lagrangian) first Piola-Kirchhoff stress tensor is zrr 0 0 [ 1 0 zfw 0 
0 0 -Go s,,b,l~)* 0 0 = 0 s,,(x,lr)(~xrl~~) 0 

0 0 &7b,l~Nw~~) 
where x, is the current (Eulerian) particle position and r is 
the original (Lagrangian) particle position. Then conserva- 
tion of momentum can be written in the Lagrangian form 

2 dv, 
PLT z-’ 

2 a-G - - 2(Z,, - Z,,)r = 0, Jr 

or in a form that uses Cauchy stress in the Lagrangian 
frame, 

dv, 
PLr2x-x, dr 

(7 l/21x2 

z=2(s,,-s,,)y = 0. 

The Lagrangian equation has the quasilinear form 

X 

[ ALi, Ir:,l-‘%I 

= 2((Z,r - &OYPL)(W) 

[ (MpL)(vlr) 1 

and is differenced in the form 

[v;+‘- 
1 

$1 Pi, Crj+ I/Z -rf- 1~21 

_ 2Ar 
i 
(-us+ ’ + V,J,k G&+ ’ + CGU!: 

2 - 2 1 

1 
x - Cf, I/2 - r,‘- 1,2 2 

] = 0. (6.1) 

On the other hand, the form employing the Cauchy stress 
has the quasilinear form 

a v 
z s,, + [I[ k iij,l[ -iL 191 

2((s,, - &YpL)(d(l/2) x2P(1/3)r3) = 
L h9IPLwx) 1 

and is differenced in the form 

cvJk+’ - 
1 

$1 P, j Crj, ,,2 - $ 1,2l 

X 
1/3[(x$$3 - (x,k:,::2)3] 

k+ 112 
x, + I/2 

_ x+ + 112 
I- 112 

x f  [(x,“++,::‘)‘- (x;:,::2)2] = 0. 

Here, ?rrO is derived from the cap model, and 

4, = (k, + =,,I 3, 

(6.2) 

The quantities at the half-time level are determined by 
characteristic tracing and the formula 

Xi+ I/2 k + ‘I2 = x,“+ ,,2 + 4 Arv;=,::2 = 4(x.;+ ,,2 + XT:,:,); 
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FIG. 13. Mesh refinement study for pressure time history at r = 50 cm. 
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furthermore, the stresses at the new time level are computed 
by the cap model algorithm before the velocity update. 

We used the difference scheme (6.2) instead of (6.1) for 
two reasons. For one, (6.2) has a linearized coefficient 
matrix that uses the Eulerian acoustic impedances for 
the charactersitic directions, while the other uses the 
Lagrangian acoustic impedances. Near the explosion, 
the stiffening of the material and the compression of the 
Eulerian width of the Lagrangian cell lead to significant 
increases in the Lagrangian acoustic impedances, while the 
Eulerian acoustic impedances are nicely behaved. Second, 
in problems involving a point source the first Piola- 
Kirchhoff stress at zero Lagrangian radius is not well 
defined. 

In attempting to compute the solution to this explosion 
problem, we encountered a number of difficulties. First 
of all, the weak-wave Riemann solver produced serious 
numerical oscillations that eventually led to tensile failure of 
the material and premature termination of the simulation, 
so it had to be replaced with one of the Riemann solvers for 
strong shocks. Second, we found that the attenuation of the 
peak pressure as the shock moved out to larger radii caused 
the strong shock detector eventually to turn off, unless the 
parameters i,,, and i,,, were set so low that essentially 
all disturbances at early time appeared to be strong dis- 
continuities; as a result, we could not use the second of the 
two approximate Riemann solvers for strong shocks. Our 
third problem was that the peak pressure and peak 
velocities occurred in different cells; as a result, slope 
limiting tended to limit the two fields differently, resulting in 
numerical oscillations with the second-order algorithm. 

In order to make the second-order Godunov method 
work on this problem, it has been necessary to employ a 
number of numerical techniques. In order to handle the first 
two difficulties, we used strength-weighted averages for the 
approximate Riemann problem. The third problem was 
treated by computing slopes in the flux variables (radial 
stress and velocity), computing the factors by which 
standard limiting wants to reduce the centered slopes, and 
then limiting both centered slopes by the minimum of these 
two factors. 

The results in Figs. 13-15 show the pressure histories at 
three particles, one near the inner radius, one in the middle, 
and the other near the outer radius. The four plots in each 
of these figures show mesh refinement studies, at CFL = i, 
using uniform grid calculations on 100, 200, 400, or 800 
cells. Note that the pressure peaks are unresolved with 400 
cells or fewer and that there are numerical oscillations at 
large radii for all of the calculations. (These oscillations 
occur even when the first-order version of the algorithm 
is used.) We remark that the second-order algorithm 
improves the height of the pressure peaks at the inner 
stations in the coarse uniform grid calculations by roughly 
10 %, relative to calculations with the first-order version of 

the algorithm. However, the second-order algorithm does 
not make a significant difference in the accuracy of the 
results for stations at the large radii. 

A significant amount of work was performed to determine 
the cause of the oscillations at the outer station. We had 
suspected that the difficulty was due to the fact that at late 
time the timestep was being determined by the very large 
wavespeeds that developed in the highly crushed cells near 
the explosive; at late time, this meant that the shock was 
being captured at a very low local value of CFL. In such 
circumstances, the Godunov method introduces essentially 
no numerical dissipation during individual timesteps, and 
strong shocks may experience insufficient dissipation to pre- 
vent numerical oscillations. In order to test our hypothesis, 
we constructed an adaptive mesh refinement algorithm, 
which was specially designed to allow the relined mesh to 
use as large an integral fraction of the coarse grid timestep 
as the line grid CFL constraint would allow. Calculations 
with the adaptive mesh refinement algorithm showed that 
the uniform grid calculations with 800 cells are essentially 
converged. Unfortunately, this adaptive mesh refinement 
algorithm did not remove the numerical oscillations at late 
time. Next, we tried subcycling the cap model integration, 
taking as many as 50 timesteps for the equation of state 
integration for each fine grid timestep. This reduced the 
oscillations somewhat, but did not completely eliminate 
them. Numerical tests indicate that there is significant error 
in the cap model integration at the shock for pressures near 
the point where the first-order Taylor expansion of the 
failure envelope was indistinguishable from a constant to 
the working accuracy of a CRAY XMP. Thus, our current 
hypothesis is that these numerical oscillations are due to a 
peculiar sensitivity of the clay cap model to numerical 
roundoff errors. 

7. SUMMARY 

In this paper we extended our previous work on modeling 
of non-linear waves in elastic-plastic solids in two ways. 
First, we constructed an Eulerian version of the algorithm, 
which required a significantly more complicated method for 
the approximate solution of Riemann problems. Second, we 
constructed two alternative techniques for modifying the 
weak-wave approximation to the solution of the Riemann 
problem, in order to handle strong discontinuities. Our 
numerical methods were verified by comparison with a 
complete set of analytical solutions to the Riemann problem 
for the Antman-Szymczak model, and the resulting algo- 
rithm was used to solve a very difficult applied problem 
modeling an explosion inside a clay sphere. These results 
represent the final necessary steps before extending the 
Godunov algorithm to multi-dimensional problems. 

The application of the Lagrangian algorithm to the 
explosion problem represents a great deal of work, because 
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the numerical techniques developed for gas dynamics and 
for the Antman-Szymczak model did not work without 
modification. The early numerical results provided only 
limited information, because numerical oscillations typi- 
cally made the cap model fail in tension, terminating the 
calculation. We had to proceed slowly, testing each piece of 
the algorithm because each was equally suspect. The discus- 
sion of the modifications needed to make the algorithm 
work provide some useful insight, however. The list of 
problems roughly follows the sequence in which they appear 
during the calculation. By plotting the numerical fluxes as a 
function of timestep, we were able to detect the difficulties 
with the approximate Riemann solvers at early time. Other 
difficulties were more localized and were detected by 
plotting profiles of the solution across the grid. 

We believe that the results in this paper illustrate that, 
while many modern shock-capturing methods work well on 
shock-tube problems for gamma-law gases, this does not 
mean that they will apply to other problems just as easily. 
Some new applications, such as shocks in solids, may 
require a significant amount of refinement of the numerical 
algorithm by experts trained in both the applications and 
the algorithms. 
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